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This work presents a strategy for dealing with reliability-based design problems of a class of linear and
nonlinear finite element models under stochastic excitation. In general, the solution of this class of
problems is computationally very demanding due to the large number of finite element model analyses
required during the design process. A model reduction technique combined with an appropriate opti-
mization scheme is proposed to carry out the design process efficiently in a reduced space of generalized
coordinates. In particular, a method based on component mode synthesis is implemented to define a
reduced-order model for the structural system. The re-analyses of the component or substructure modes
as well as the re-assembling of the reduced-order system matrices due to changes in the values of the
design variables are avoided. The effectiveness of the proposed model reduction technique in the context
of reliability-based design problems is demonstrated by two numerical examples.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Structural design via deterministic mathematical programming
techniques has been widely accepted as a viable tool for engi-
neering design [1]. However, in most structural engineering
applications response predictions are based on models involving
uncertain parameters. This is due to a lack of information about
the value of system parameters external to the structure such as
environmental loads or internal such as system behavior. Under
uncertain conditions the field of reliability-based optimization
provides a realistic and rational framework for structural optimi-
zation which explicitly accounts for the uncertainties [2–4]. In the
present work, structural design problems involving finite element
models under stochastic loading are considered. The design pro-
blem is formulated as the minimization of an objective function
subject to multiple design requirements including standard and
reliability constraints. The probability that any response of interest
exceeds in magnitude some specified threshold level within a
given time duration is used to characterize the system reliability.
This probability is commonly known as the first excursion prob-
ability [5]. The corresponding reliability problem is expressed in
terms of a multidimensional probability integral involving a large
number of uncertain parameters. Reliability-based design for-
mulations require advanced and efficient tools for structural
).
modeling, reliability analysis and mathematical programming.
Modeling and analysis techniques of structural systems are well
established and sufficiently well documented in the literature [6].
On the other hand, several tools for assessing structural reliability
have lately experienced a substantial development providing
solution of involved systems [7–9]. In the field of reliability-based
optimization of stochastic dynamical systems several procedures
have been recently developed allowing the solution of problems
dealing with finite element models of relatively small number of
degrees of freedom [10–14]. However, the application of
reliability-based optimization to stochastic dynamical systems
involving medium/large finite element models remains somewhat
limited. In fact, the solution of reliability-based design problems of
stochastic finite element models requires a large number of finite
element analyses to be perform during the design process. These
analyses correspond to finite element re-analyses over the design
space (required by the optimizer), and system responses over the
uncertain parameter space (required by the simulation technique
for reliability estimation). Consequently, the computational
demands depend highly on the number of finite element analyses
and the time taken for performing an individual finite element
analysis. Thus, the computational demands in solving reliability-
based design problems may be large or even excessive.

In this context, it is the main objective of this work to present
a framework for integrating a model reduction technique into
the reliability-based design formulation of a class of stochastic
linear and nonlinear finite element models. The goal is to reduce
the time consuming operations involved in the re-analyses and
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dynamic responses of medium/large finite element models. Spe-
cifically, a model reduction technique based on substructure cou-
pling for dynamic analysis is considered in the present imple-
mentation [15]. The proposed method corresponds to a general-
ization of substructure coupling applicable to systems with loca-
lized nonlinearities. The technique includes dividing the linear
components of the structural system into a number of sub-
structures obtaining reduced-order models of the substructures,
and then assembling a reduced-order model for the entire struc-
ture. In summary, the novel aspect of this contribution involves a
strategy for integrating a model reduction technique into the
reliability-based design formulation of medium/large finite ele-
ment models under stochastic excitation. This represents an
additional area of application of substructure coupling which has
been already used for uncertainty management in structural
dynamics with applications in areas such as uncertainty analysis,
finite element model updating, and reliability sensitivity analysis
[16–19]. The organization of this work is as follows. The for-
mulation of the reliability-based design problem is presented in
Section 2. Next, the characterization of the structural systems of
interest is considered in Section 3. Implementation issues such as
reliability estimation, optimization strategy and model reduction
are discussed in Section 4. The mathematical background of the
model reduction technique is outlined in Section 5. The integration
of the model reduction technique into the design process is dis-
cussed in Section 6. The effectiveness of the proposed strategy is
demonstrated in Section 7 by the reliability-based design of two
structural systems. The paper closes with some conclusions and
final remarks.
2. Problem formulation

The reliability-based design problem is characterized in terms
of the following constrained non-linear optimization problem

Minθ CðθÞ
s:t: giðθÞr0 i¼ 1;…;nc

PFi ðθÞ�Pn

Fi
r0 ; i¼ 1;…;nr

θAΘ ð1Þ
where θ;θi; i¼ 1;…;nd is the vector of design variables with side
constraints θl

irθirθu
i , CðθÞ is the objective function, giðθÞr0; i¼ 1

;…;nc are standard constraints, and PFi ðθÞ�Pn

Fi
r0 are the reliability

constraints which are defined in terms of the failure probability
functions PFi ðθÞ and target failure probabilities Pn

Fi
; i¼ 1;…;nr . It is

assumed that the objective and constraint functions are smooth
functions of the design variables. The objective function CðθÞ can be
defined in terms of initial, construction, repair or downtime costs,
structural weight, or general cost functions. The standard constraints
are related to general design requirements such as geometric condi-
tions, material cost components, and availability of materials. On the
other hand, the reliability constraints are associated with design spe-
cifications characterized through the use of reliability measures given
in terms of failure probabilities with respect to specific failure criteria.
For structural systems under stochastic excitation the probability that
design conditions are satisfied within a particular reference period T
provides a useful reliability measure [5]. Such measure is referred as
the first excursion probability and quantifies the plausibility of the
occurrence of unacceptable behavior (failure) of the structural system.
In this context, a failure event Fi can be defined as Fiðθ; zÞ ¼
diðθ; zÞ41, where di is the so-called normalized demand function
defined as diðθ; zÞ ¼maxj ¼ 1;…;lmaxtA ½0;T�∣rijðt;θ; zÞ∣=ri

n

j , where zAΩz

� Rnz is the vector of uncertain variables involved in the problem
(characterization of the excitation), rijðt;θ; zÞ; j¼ 1;…; l are the

response functions associated with the failure event Fi, and ri
n

j is the
acceptable response level for the response rij. It is clear that the
responses rijðt;θ; zÞ are functions of time (due to the dynamic nature of
the excitation), the design vector θ, and the random vector z. These
response functions are obtained from the solution of the equation of
motion that characterizes the structural model (see next Section). The
uncertain variables z are modeled using a prescribed probability
density function pðzÞ. This function indicates the relative plausibility of
the possible values of the uncertain parameters zAΩz. The probability
of failure evaluated at the design θ is formally defined as

PFi ðθÞ ¼ P max
j ¼ 1;…;l

max
tA ½0;T�

∣rijðt;θ; zÞ∣
ri

n

j

41

" #
ð2Þ

where P½�� is the probability that the expression in parenthesis is true.
Equivalently, the failure probability function evaluated at the design θ
can be written in terms of the multidimensional probability integral

PFi ðθÞ ¼
Z
diðθ;zÞ41

pðzÞ dz ð3Þ

It is noted that the above formulation can be extended in a
direct manner if the cost of partial or total failure consequences is
also included in the definition of the objective function. It is also
noted that constraints related to statistics of structural responses
(i.e. mean value and/or higher-order statistical moments) can be
included in the formulation as well. Thus, the above formulation is
quite general in the sense that different reliability-based optimi-
zation formulations can be considered.
3. Mechanical modeling

A quite general class of structural dynamical systems can be
cast into the following equation of motion

M €uðtÞþC _uðtÞþKuðtÞ ¼ kðuðtÞ; _uðtÞ; τðtÞÞþfðtÞ ð4Þ
where uðtÞ denotes the displacement vector of dimension n, _uðtÞ
the velocity vector, €uðtÞ the acceleration vector, kðuðtÞ; _uðtÞ; τðtÞÞ
the vector of non-linear restoring forces, τðtÞ the vector of a set of
variables which describes the state of the nonlinear components,
and fðtÞ the external force vector. The matrices M, C, and K
describe the mass, damping, and stiffness, respectively. Note that
some of the matrices and vectors involved in the equation of
motion depend on the vector of design variables θ and/or the
uncertain system parameters z and therefore the solution is also a
function of these quantities. The explicit dependence of the
response on these quantities is not shown here for simplicity in
notation. The evolution of the set of variables τðtÞ is described by a
first-order differential equation

_τ ðtÞ ¼ κðuðtÞ; _uðtÞ; τðtÞÞ ð5Þ
where κ represents a non-linear vector function. This character-
ization allows to model different types of nonlinearities including
hysteresis and degradation [20,21]. From Eq. (5) it is seen that the
set of variables τðtÞ is a function of the displacements uðtÞ and the
velocities _uðtÞ, i.e. τðuðtÞ; _uðtÞÞ. Therefore, Eqs. (4) and (5) con-
stitute a system of coupled non-linear differential equations for
uðtÞ and τðtÞ. The previous formulation is particularly well suited
for cases where most of the components of the structural system
remain linear and only a small part behaves in a nonlinear manner.
Such cases are of particular interest in the present work, that is,
linear finite element models with localized nonlinearities. The
external force vector fðtÞ is modeled as a non-stationary stochastic
process. Depending on the application under consideration dif-
ferent methodologies are available for generating these types of
processes. Such methodologies include filtered Gaussian white
noise processes, stochastic processes compatible with power
spectral densities, point source-based models, and record-based
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models [5,22–25]. A common aspect of the aforementioned
methodologies is that the generation of the corresponding sto-
chastic processes samples involves in general a large number of
random variables, e.g. of the order of hundreds or thousands.
Therefore, the evaluation of the reliability constraints for a given
design constitutes a high-dimensional problemwhich is extremely
demanding from a numerical point of view.
4. Implementation issues

4.1. Reliability estimation

The reliability constraints of the nonlinear constrained opti-
mization problem (1) are defined in terms of the first excursion
probability functions PFi ðθÞ; i¼ 1;…nr . As previously pointed out,
these reliability measures are given in terms of high-dimensional
integrals. The difficulty in estimating these quantities favors the
application of simulation techniques to cope with the probability
integrals [26]. It is important to note that each sample implies the
solution of the equation of motion that characterizes the structural
model (a dynamic finite element model analysis). Therefore an
efficient simulation technique is required in the context of the
present formulation. A general applicable method named subset
simulation is adopted here [7]. In this well known advanced
simulation technique the failure probabilities are expressed as a
product of conditional probabilities of some chosen intermediate
failure events, the evaluation of which only requires simulation of
more frequent events. The intermediate failure events are chosen
adaptively using information from simulated samples so that they
correspond to some specified values of conditional failure prob-
abilities. Therefore, a rare event simulation problem is converted
into a sequence of more frequent event simulation problems. The
method uses a Markov chain Monte Carlo method based on the
Metropolis algorithm for sampling from the conditional prob-
abilities [27]. This is the most widely applicable simulation tech-
nique because it is not based on any geometrical assumption about
the topology of the failure domain. In fact, validation calculations
have shown that subset simulation can be applied efficiently to a
wide range of dynamical systems including general linear and
non-linear systems [28,29]. In addition, subset simulation is very-
well suited for parallel implementation in a computer cluster [30].
For a detailed description and numerical implementation of subset
simulation see references [7,29,31].
4.2. Optimization strategy

The solution of the reliability-based optimization problem
defined in Eq. (1) can be obtained in principle by a number of
techniques such as standard deterministic optimization schemes
or stochastic search algorithms [1,12,32]. In particular, a class of
interior point algorithms based on the solution of the first-order
optimality conditions is considered for solving the numerical
examples presented in this work [33]. In general, the above
scheme has proved to be quite effective for a wide range of
applications in the context of deterministic and stochastic opti-
mization problems [34,35]. Since the focus of this work is not on
the optimization strategy but on the integration of a model
reduction technique into the reliability-based design formulation
of medium/large stochastic finite element models, the reader is
referred to [33,35] for a detailed description and implementation
of the aforementioned algorithm.
4.3. Model reduction

The solution of the reliability-based optimization problem (1) is
computationally very demanding due to the large number of
dynamic analyses required during the design process. In fact the
reliability estimation at each design requires the evaluation of the
system response at a large number of samples in the uncertain
parameter space (of the order of hundreds or thousands). In
addition, the iterative nature of the optimization strategy may
impose additional computational demands. Consequently, the
computational cost may become excessive when the computa-
tional time for performing a dynamic analysis is significant. To
cope with this difficulty, a model reduction technique is con-
sidered in the present formulation. In particular, a method based
on substructure coupling or component-mode synthesis is
implemented in order to define a reduced-order model for the
structural system [15,17]. The general idea is to divide the linear
components of the structural system into a number of linear
substructures obtaining reduced-order models and then assem-
bling a reduced-order model of the entire structural system.

4.4. Synopsis of proposed methodology

The mathematical background of the model reduction techni-
que and its integration into the design process are discussed in
Sections 5 and 6. In Section 5 the transformation matrix that
define the set of generalized coordinates of the reduced-order
model is first defined. Based on the new set of coordinates the
reduced-order model matrices are derived. Then, the response of
the system in terms of the reduced-order model is discussed. Next,
the design process based on the reduced-order model is outlined
in Section 6. First, a particular finite element model parametriza-
tion scheme that allows to represent the substructure matrices
explicitly in terms of the design variables is introduced. The
representation of the substructure matrices is then used to con-
struct an expansion of the reduced-order model matrices with
respect to the design variables. Based on this expansion it is
demonstrated that the reduced-order model matrices need to be
computed and assembled once during the entire design process.
This in turn implies a drastic reduction in the computational
demands involved in the design of complex structural systems.
Finally, some advantages and limitations of the proposed for-
mulation are discussed.
5. Component mode synthesis technique

5.1. Substructure modes

In the present formulation fixed-interface normal modes and
interface constraint modes are considered in order to define the
reduced-order model [15]. To this end, the following partitioned
form of the mass matrix MsARns�ns

and stiffness matrix KsARns�ns

of the substructure s; s¼ 1;…;Ns, is considered

Ms ¼
Ms

ii Ms
ib

Ms
bi Ms

bb

" #
; Ks ¼

Ks
ii Ks

ib

Ks
bi Ks

bb

" #
ð6Þ

where the indices i and b are sets containing the internal and
boundary degrees of freedom of the substructure s, respectively.
The boundary degrees of freedom include only those that are
common with the boundary degrees of freedom of adjacent sub-
structures, while the internal degrees of freedom are not shared
with any adjacent substructure. In this framework, all boundary
coordinates are kept as one set us

bðtÞARnsb and the internal coordi-
nates in the set us

i ðtÞARnsi . The displacement vector of physical
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coordinates of the substructure s is given by usðtÞT ¼ 〈us
i ðtÞT ;us

bðtÞT 〉
ARns where ns ¼ ns

i þns
b, and the symbol 〈 〉 represents a row vector.

The fixed-interface normal modes are obtained by restraining all
boundary degrees of freedom and solving the eigenproblem

Ks
iiΦs

ii�Ms
iiΦs

iiΛ
s
ii ¼ 0 ð7Þ

where the matrixΦs
ii contains the complete set of nis fixed-interface

normal modes, and Λs
ii is the corresponding matrix containing the

eigenvalues. The fixed-interface normal modes are normalized with
respect to the mass matrix Ms

ii satisfying Φs
ii
TMs

iiΦs
ii ¼ Isii, and

Φs
ii
TKs

iiΦs
ii ¼Λs

ii. On the other hand, the interface constraint modes
are defined by setting a unit displacement on the boundary coor-
dinates us

bðtÞ and zero forces in the internal degrees of freedom.
Then, the set of interface constraint modes is given by

Ks
ii Ks

ib

Ks
bi Ks

bb

" #
Ψs

ib

Isbb

" #
¼

0s
ib

Rs
bb

" #
ð8Þ

from where the interface constraint-mode matrix Ψs
c can be

defined as

Ψs
c ¼

Ψs
ib

Isbb

" #
¼ �Ks

ii
�1Ks

ib

Isbb

2
4

3
5 ð9Þ

where Ψs
ibARns

i�ns
b is the interior partition of the interface

constraint-mode matrix.

5.2. Reduced-order model

Based on the previous fixed-interface normal modes and
interface constraint modes a displacement transformation matrix
is introduced to define a set of generalized coordinates. Such
transformation corresponds to the Craig–Bampton method [15],
and it takes the form:

usðtÞ ¼
us
i ðtÞ

us
bðtÞ

( )
¼ Φs

ik Ψs
ib

0s
bk Isbb

" #
vs
kðtÞ

vsbðtÞ

( )
¼Ψs vsðtÞ ð10Þ

where Φs
ikARnsi�nsk is the interior partition of the matrix Φs

ii of the
nk

s kept fixed-interface normal modes, vsðtÞ represents the sub-
structure generalized coordinates composed by the modal coor-
dinates vskðtÞ of the kept fixed-interface normal modes and the
boundary coordinates vs

bðtÞ ¼ us
bðtÞ, ΨsARns�n̂s

is the Craig–
Bampton transformation matrix with n̂s ¼ ns

kþns
b, and all other

terms have been previously defined. The substructure mass matrix
M̂

s
ARn̂s�n̂s

and stiffness matrix K̂
s
ARn̂s�n̂s

in generalized coordi-
nates vsðtÞ are given by

M̂
s ¼ΨsTMsΨs

; K̂
s ¼ΨsTKsΨs ð11Þ

Next, the vector of generalized coordinates for all the Ns sub-
structures

vðtÞT ¼ 〈v1ðtÞT ;…; vNs ðtÞT 〉ARnv ð12Þ
where nv ¼

PNs
s ¼ 1 n̂

s is introduced. Based on this vector, a new
vector qðtÞ that contains the independent generalized coordinates
consisting of the fixed-interface modal coordinates vskðtÞ for each
substructure and the physical coordinates vl

bðtÞ; l¼ 1;…;Nb at the
Nb interfaces is defined as

qðtÞT ¼ 〈v1k ðtÞT ;…; vNs
k ðtÞT ; v1bðtÞT ;…; vNb

b ðtÞT 〉ARnq ð13Þ
where nq ¼

PNs
s ¼ 1 n

s
kþ

PNb
l ¼ 1 n

l
b, and nb

l is the number of degrees
of freedom at the interface l (l¼ 1;…;NbÞ. These two vectors are
related by the transformation:

vðtÞ ¼ TqðtÞ ð14Þ
where the matrix TARnv�nq is a matrix of zeros and ones that
couples the independent generalized coordinates qðtÞ of the
reduced system with the generalized coordinates of each sub-
structure. The assembled mass matrix M̂ARnq�nq and the stiffness
matrix K̂ARnq�nq for the independent reduced set qðtÞ of gen-
eralized coordinates take the form:

M̂ ¼ TT
M̂

1
0 0

0 ⋱ 0

0 0 M̂
Ns

2
664

3
775T; K̂ ¼ TT

K̂
1

0 0
0 ⋱ 0

0 0 K̂
Ns

2
664

3
775T ð15Þ

The number of fixed-interface normal modes to be used in the
reduced-order model can be established by using different criteria.
One particular criterion is discussed in the Numerical Examples
Section. Finally, it is also noted that further reduction in the gen-
eralized coordinates can be achieved by replacing the interface
degrees of freedom by a reduced number of interface modes. That
is, the displacement coordinates vlbðtÞARnlb at the interface l can be
expressed in terms of a set of generalized coordinates [17]. For
simplicity and clarity all interface degrees of freedom are kept in
the present implementation.

5.3. Reduced-order model response

In order to write the equation of motion of the structural sys-
tem in terms of the reduced set of generalized coordinates qðtÞ, it
is first observed that the independent physical coordinates uðtÞ of
the original unreduced structural model can be written directly in
terms of qðtÞ as
uðtÞ ¼ TΨTqðtÞ ð16Þ
where TARn�nu is a constant matrix that map the vector uðtÞT ¼
ou1ðtÞT ;…;uNs ðtÞT 4ARnu ;nu ¼

PNs
s ¼ 1 n

s of the physical coordi-
nates of all substructures to uðtÞ, andΨARnu�nv is a block diagonal
matrix defined in terms of the Craig–Bampton transformation
matrices of all substructures, that is, Ψ¼ blockdiagðΨ1

;…;ΨNs Þ.
Based on this transformation, the equation of motion of the
reduced-order system can be written as

M̂ €qðtÞþ Ĉ _qðtÞþK̂qðtÞ ¼ TTΨTT
T
kðuðtÞ; _uðtÞ; τðtÞÞþTTΨTT

T
fðtÞ

ð17Þ
where ĈARnq�nq is the assembled damping matrix for the inde-
pendent reduced set qðtÞ, which can be defined in terms of the
substructures damping matrices in generalized coordinates vsðtÞ as
Ĉ
s ¼ΨsTCsΨs

; s¼ 1;…;Ns, and all other terms have been pre-
viously defined. The assembled damping matrix has a similar
structure as M̂ and K̂ (see Eq. (15)). It is noted that the dimension
of the matrices involved in the equation of motion of the reduced-
order model can be substantially smaller than the dimension of
the unreduced matrices, e.g. nq⪡n. It is also noted that the vector of
non-linear restoring forces can be characterized in local compo-
nent specific coordinates, due to the localized non-linearities, with
a minimal number of variables. These local variables are related to
the vector of independent physical coordinates uðtÞ by a standard
linear transformation matrix. In this manner, the set of nonlinear
Eqs. (5) and (17) can be integrated efficiently by an appropriate
step-by-step integration scheme [6] or by modal analysis
[19,36,37]. Finally, it should be pointed out that the matrices
involved in the equation of motion of the original system may
depend on the vector of design variables θ, and therefore a
number of the quantities that appear in this section are also
function of θ. The explicit dependence of those quantities on θ is
examined in the following section.

6. Design based on the reduced-order model

The previous model reduction technique is quite general in the
sense that dividing the structure into substructures and reducing
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the number of physical coordinates to a much smaller number of
generalized coordinates certainly alleviates part of the computa-
tional effort. However, the generation of the reduced-order model
at each design implies the solution of the fixed-interface normal
modes eigenproblem and the computation of the interface con-
straint modes for each substructure. This procedure can be com-
putationally very expensive due to the substantial computational
overhead that arises at substructure level. In order to make the
model reduction technique more efficient a particular para-
metrization scheme in terms of the design variables is considered
in the present formulation. Specifically, it is assumed that the
stiffness and mass matrix of a substructure s; s¼ 1;…;Ns, depend
on only one of the design variables. Such dependency can be linear
or nonlinear. Clearly, the case in which the stiffness and mass
matrix of a substructure s do not depend on the design variables is
also included in this parametrization scheme. It should be pointed
out that the previous parametrization is often encountered in a
number of practical applications [17,19]. The analysis of the
reduced-order model based on this particular parametrization
scheme is presented in this section. Some remarks regarding the
more general case for which the stiffness and mass matrices of a
substructure depend on more than one design variable are pro-
vided at the end of the section.

6.1. Normal and constraint modes

Let S0 be the set of substructures that do not depend on the
vector of design variables θ. In this case the substructure stiffness
and mass matrices are written as Ks ¼Ks

0 and Ms ¼Ms
0. The sub-

structure fixed-interface normal modes and interface constraint
modes are independent of the design variables value. Thus, only a
single analysis is required to estimate the interface modes for the
particular substructure s. The substructure modes of these sub-
structures are computed once during the design process. In other
words, the eigenvalue problem to compute the eigenvalues and
mode shapes of the kept fixed-interface normal modesΦs

ik as well
as the solution of the linear system to compute the interface
constraint modes Ψs

ib for a component sAS0 are not repeated at
each iteration of the design process.

On the other hand, let Sj be the set of substructures that depend
on the design variable θj. It is assumed that the stiffness and mass
matrices take the general form

Ks ¼K
s
hjðθjÞ; Ms ¼M

s
gjðθjÞ ð18Þ

where the reference matrices K
s
andM

s
are independent of θj, and

hjðθjÞ and gjðθjÞ are linear or nonlinear functions of the design
variable θj. It is clear that the partitions of the stiffness matrix Ks

and mass matrix Ms (see Eq. (6)) admit the same parametrization.
Then, the eigenvalues and eigenvectors associated with the kept
fixed-interface normal modes can be expressed as

Λs
kk ¼Λs

kk
hjðθjÞ
gjðθjÞ

; Φs
ik ¼Φs

ik
1ffiffiffiffiffiffiffiffiffiffiffiffi
gjðθjÞ

q ð19Þ

where the matrices Λs
kk and Φs

ik are the solution of the eigen-
problem

K
s
iiΦ

s
ik�M

s
iiΦ

s
ikΛ

s
kk ¼ 0 ð20Þ

where the matrices Φs
ik and Λs

kk of the reference eigenvectors and
eigenvalues, respectively, are independent of θj. Since the fixed-
interface normal mode are normalized with respect to the mass
matrix Ms

ii (see Section 5.1), it is easily shown that the reference
mode shapes Φs

ik satisfy the orthogonal conditions
ΦsT

ikM
s
iiΦ

s
ik ¼ Iskk, and ΦsT

ikK
s
iiΦ

s
ik ¼Λs

kk. Furthermore, the interface
constraint modes are also independent of θj since

Ψs
ib ¼ �Ks�1

ii Ks
ib ¼ �K

s�1
ii hj�1ðθjÞK

s
ib hjðθjÞ ¼ �K

s�1
ii K

s
ib ¼Ψs

ib

ð21Þ
Using (Eqs. (19) and (20)), a single eigen-analysis of each sub-

structure is required to provide the exact estimate of the normal
and constraint modes for any value of the design variable θj. This is
a very important result in the context of the proposed formulation
since the computationally intensive re-analyses for estimating the
fixed-interface constrained modes and the interface constraint
modes of each substructure for different values of θj required
during the design process are completely avoided. In addition, the
previous result allows to express the reduced-order model
matrices explicitly in terms of the design variables (see next sec-
tions). This in turn has a significant implication in terms of the
computational efforts involved during the design process (see
Section 7). Finally, it is emphasized that the restriction regarding
the matrices dependence on one design variable is at substructure
level. Of course different substructures can depend on different
design variables.

6.2. Substructure matrices

The substructure mass matrix M̂
s
ARn̂s�n̂s

and stiffness matrix
K̂

s
ARn̂s�n̂s

in generalized coordinates vsðtÞ are given in Eq. (11).
Based on the previous parametrization, it can be shown that the
partitions for the substructure stiffness matrices K̂

s
kkARnsk�ns

k , K̂
s
kb

ARns
k�ns

b ; K̂
s
bbARns

b�ns
b and mass matrices M̂

s
kkARns

k�ns
k , M̂

s
kbARn s

k �n s
b

M̂
s
bbARns

b�ns
b of a substructure sASj follow the parametrization

K̂
s
kk ¼Λs

kk
hjðθjÞ
gjðθjÞ

; K̂
s
kb ¼ K̂

sT

bk ¼ 0s
kb; K̂

s
bb ¼ ðKs

bbþK
s
biΨ

s
ibÞhjðθjÞ

ð22Þ
and

M̂
s
kk ¼ Ikk; M̂

s
kb ¼ M̂

sT

bk ¼ ðΦsT

ikM
s
iiΨ

s
ibþΦsT

ikM
s
ibÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
gjðθjÞ

q

M̂
s
bb ¼ ½ðΨsT

ibM
s
iiþM

s
biÞΨ

s
ibþΨsT

ibM
s
ibþM

s
bb�gjðθjÞ ð23Þ

The partitions in Eqs. (22) and (23) have been derived from (11)
using the form of Ψs defined in (10), after substituting the
matrices Φs

ik, Λ
s
kk, and Ψs

ib from the expressions (19) and (21).

6.3. Parametrization of reduced-order matrices

Substituting into Eq. (15) the previous characterization of the
substructure matrices partitions, the stiffness matrix of the
reduced-order system can be written as

K̂ ¼ K̂0þ
Xnd
j ¼ 1

K̂ 1j
hjðθjÞ
gjðθjÞ

þK̂ 2jh
jðθjÞ

9>=
>;

8><
>: ð24Þ

where nd is the number of independent design variables, and the
matrices K̂0, K̂ 1j and K̂ 2j; j¼ 1;…;nd are constant matrices.
Similarly, the mass matrix of the reduced-order system can be
characterized as

M̂ ¼ M̂0þ
Xnd

j ¼ 1

fM̂1jþM̂2j

ffiffiffiffiffiffiffiffiffiffiffiffi
gjðθjÞ

q
þM̂ 3jgjðθjÞg ð25Þ

where the matrices M̂0, M̂ 1j, M̂2j, and M̂3j, j¼ 1;…;nd are also
constant matrices. The definition of the above matrices is provided



Fig. 1. Three-span eight-story two dimensional frame structure.
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in Appendix A. It is important to emphasize that the assembled
matrices K̂0, K̂ 1j, K̂ 2j, M̂0, M̂1j, M̂2j and M̂3j in the expansions (24)
and (25) are independent of the values of the vector of design
variables θ. To save computational time these matrices are com-
puted and assembled once for a reference model obtained from
the original model by setting hjðθjÞ ¼ 1, and gjðθjÞ ¼ 1. Therefore
there is no need for this computation to be repeated during the
iterations of the design process due to the changes in value of the
design variables. This feature results in substantial computational
savings since it avoids re-computing the fixed-interface and con-
straint modes for each substructure and also avoids assembling
the reduced matrices from these substructures. The formulation
guarantees that the reduced model is based on the exact sub-
structure modes for all values of the design variables. In summary,
the reduced-order substructure matrices are computed once dur-
ing the design process.

6.4. Parametrization of global transformation matrix

Finally, it is noted that the transformation matrix TΨT that
relates the independent physical coordinates uðtÞ with the gen-
eralized coordinates of the reduced-order model qðtÞ (see Eqs. (16)
and (17)) can also be written explicitly in terms of the design
variables. In fact, using the structure of Ψs and the dependence of
Φs

ik and Ψs
ib on θj derived in (19) and (21) respectively, this

transformation matrix can be expressed as

TΨT¼ T blockdiag ðΨ1
δ10;…;ΨNs

δNs0ÞT

þ
Xnd
j ¼ 1

½T blockdiag ðΨ1
1δ1j;…;ΨNs

1 δNsjÞT
1ffiffiffiffiffiffiffiffiffiffiffiffi
gjðθjÞ

q
þT blockdiag ðΨ1

2δ1j;…;ΨNs

2 δNsjÞT� ð26Þ

where Ψs
is the Craig–Brampton transformation matrix of a sub-

structure s that does not depend on the design variables, Ψs
1 and

Ψs
2 are matrices associated with the Craig–Brampton transfor-

mation matrix of a substructure s that depends on the design
variable θj, with

Ψs
1 ¼

Φs
ik 0s

ib

0s
bk 0s

bb

" #
; Ψs

2 ¼
0s
ik Ψs

ib

0s
bk Isbb

" #
ð27Þ

Note that the matricesΨs
1 andΨ

s
2 do not depend on the design

variables. Thus, from the previous expressions it is clear that
the products involved in the transformation matrix TΨT are
computed once during the design process. Furthermore, due
to the structure of the matrices T and T it can be shown that
the previous products involve just permutations of rows and col-

umns of the block diagonal matrices blockdiagðΨ1
δ10;…;ΨNs

δNs0Þ,
blockdiagðΨ1

1δ1j;…;ΨNs

1 δNsjÞ and blockdiagðΨ1
2δ1j;…;ΨNs

2 δNsjÞ.

6.5. Final remarks

It is stressed that the efficiency of the above formulation in
terms of the number of substructure analyses required is based on
the assumption that the substructure matrices depend only on one
design variable. For the more general case, the normal and con-
straint modes have to be recomputed in each iteration of the
design process. In fact, when the substructure matrices depend on
two or more design variables, a representation similar to Eqs. (24)
and (25) is no longer applicable and the reduced substructure
matrices of the reduced-order model should be re-assembled from
the substructure stiffness and mass matrices for new values of the
vector of design variables θ. This repeated computation, however,
is usually confined to a small number of substructures in many
practical applications. So, even in the more general case a
significant saving may still arise since the estimation of the fixed-
interface modes and the interface constraint modes for most of the
substructures need not to be repeated during the design process.
For the general case (dependence on two or more design variables)
it is also interesting to note that interpolation schemes can be
adopted to avoid re-analyses at the substructure level by approx-
imating the fixed-interface normal modes and the interface con-
straint modes at various values of the design variables in terms of
the corresponding modes of a family of models defined at a
number of design points [38]. The use of approximation schemes
is, however, outside the scope of the present work. This aspect of
the implementation is left for future research efforts (see Con-
clusions). Finally, it is noted that parallelization techniques are also
possible at the model level. In fact, the definition of all sub-
structure matrices in generalized coordinates can be carried out in
parallel, reducing the computational time of the proposed imple-
mentation even further.
7. Numerical examples

Two numerical examples are presented in this section. The first
example, which is considered as a test problem, deals with a
simple linear model while the second example, which is con-
sidered as an application problem, considers a bridge structure
with localized nonlinearities. The objective of the test problem is
to evaluate the effectiveness of the proposed model reduction
technique in a relatively simple model, while the second example
examines the effect of the proposed technique in a more
involved model.

7.1. Example 1: test problem

7.1.1. Model description
The structural model shown in Fig. 1 is considered as a test

problem. It consists of a three-span two dimensional frame
structure. The structure has a total length of 30.0 m and a constant
floor height of 5.0 m, leading to a total height of 40.0 m. The finite
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element model comprises 160 two dimensional beam elements of
square cross section with 140 nodes and a total of 408 degrees of
freedom. The dimension of the square cross section of the beam
elements is equal to 0.4 m. The axial deformation of the column
elements is assumed to be small and they are neglected in the
model. Material properties of the beam elements have been
assumed as follows: Young's modulus E¼ 2:0� 1010 N=m2, and
mass density ρ¼ 2500 kg=m3. A 5% of critical damping for the
modal damping ratios is introduced in the model. The structural
system is excited horizontally by a ground acceleration modeled as
a non-stationary stochastic process. In particular, a stochastic
point-source model characterized by a series of seismicity para-
meters such as the moment magnitude and rupture distance is
considered in the present implementation [23,24]. The model is a
simple, yet a powerful means for simulating ground motions with
high and low frequency components. The methodology, which was
initially developed for generating synthetic ground motions, has
been reinterpreted to form a stochastic model for ground excita-
tion [39].

The input for the stochastic excitation model involves a white
noise sequence and a series of seismological parameters as pre-
viously pointed out. Details of the entire procedure can be found in
[23,40]. The duration of the excitation is equal to T¼30 s with a
sampling interval equal to ΔT ¼ 0:01 s. Based on the character-
ization of the point source model, the generation of the stochastic
ground motions involves more than 3000 random variables for the
duration and sampling interval considered. Thus, the vector of
uncertain parameters z involved in the problem (see Section 2) has
more than 3000 components. The actual excitation generated for
the test problem corresponds to ground motions of low intensity
so that the structural response is expected to be dominated by
linear elastic behavior, which is compatible with the model under
consideration. For illustration purposes, Fig. 2 shows a synthetic
excitation sample generated by the stochastic point-source model.

7.1.2. Design problem formulation
The cost C represented by the total volume of the column

elements is chosen as the objective function for the design pro-
blem. The design variables comprise the dimension of the column
elements square cross section of the different floors. In particular,
the dimension of the column elements square cross section are
linked into two design variables in this example problem. To be
more specific, the dimension of the column elements square cross
section a is parameterized as a¼ θa, where a ¼ 0:4 m denotes the
nominal dimension and θ is a normalized parameter that repre-
sents the design variable. Design variable number one (θ1) is
related to the dimension of the column elements square cross
section of floors 1–4, while the second design variable (θ2)
Fig. 2. Excitation time history sample.
controls the dimension of the column elements square cross sec-
tion of floors 5–8. To control serviceability, the design criteria are
defined in terms of the relative displacements of the first, fifth and
eighth floor with respect to the ground. The failure probability
functions are defined as

PFi ðθÞ ¼ P maxtA ½0;T �
∣δiðt;θ; zÞ∣

δi
n 41

" #
; i¼ 1;2;3 ð28Þ

where δiðt;θ; zÞ; i¼ 1;2;3 are the relative displacements of the
first, fifth and eighth floor with respect to the ground, respectively,
and δi

n

; i¼ 1;2;3 are the corresponding critical threshold levels.
The threshold levels are defined in terms of a percentage of the
total height of the frame structure. In particular, the following
values are considered: 0.05%; 0.3%; and 0.5% for the threshold
levels corresponding to the failure events associated with the first,
fifth and eighth floor, respectively. The design problem is for-
mulated as

Minθ CðθÞ
s:t: PFi ðθÞr10�4 i¼ 1;2;3
θ1Zθ2

0:75rθir2:00 i¼ 1;2 ð29Þ
Note that there are three reliability constraints plus one geo-

metric constraint in addition to the side constraints of the design
variables. It is also noted that the estimation of the probability of
failure for a given design θ represents a high-dimensional relia-
bility problem. In fact, as previously indicated, more than three
thousands random variables are involved in the corresponding
multidimensional probability integral (see Eq. (3)).

7.1.3. Reduced-order model
The structural model is subdivided into sixteen substructures

as shown in Fig. 3. Substructures 1–8 are composed by the column
elements of the different floors, while substructures 9–16 corre-
spond to the beam elements of the different floors. Based on this
subdivision it is noted that substructures 1–4 depend on the
design variable θ1, substructures 5–8 depend on the design vari-
able θ2, while substructures 9–16 are independent of the design
variables. In connection with Section 6, the nonlinear functions of
the design variables θj; j¼ 1;2 are given by hjðθjÞ ¼ θ4

j (related to
the area second moment of inertia term in the stiffness matrices)
and gjðθjÞ ¼ θ2

j (related to the area term in the mass matrices),
respectively.

For each substructure it is selected to retain all fixed-interface
normal modes that have frequency ω such that ωrαωc , with α
being a multiplication factor and ωc is a cut-off frequency which is
taken equal to 41.0 rad/s in this case (4th modal frequency of the
unreduced reference model). It is noted that the value of the factor
α affects the computational efficiency and accuracy of the model
reduction technique. The multiplication factor is selected to be
10.0 for substructures 1–8, and 2.9 for substructures 9–16. With
this selection of parameters only 1 fixed-interface normal mode is
kept for each substructure. Thus, the reduced-order model com-
prises a total of 16 generalized coordinates out of the 312 internal
degrees of freedom of all substructures (95% reduction in terms of
the internal degrees of freedom). Note that the total number of
interface degrees of freedom is equal to 96 in this case. Table 1
shows the error (in percentage) between the modal frequencies
using the unreduced reference finite element model and the
modal frequencies computed using the reduced-order model. It is
observed that the errors are quite small. In fact, the error for the
lowest 4 modes fall bellow 0.1%. The comparison with the lowest
4 modes seems to be reasonable since validation calculations show
that the contribution of the higher order modes (higher than the
4th mode) in the dynamic response of the model is negligible.



Fig. 3. Substructures of the finite element model for design purposes.

Table 1
Modal frequency error between the modal frequencies of the unreduced reference
model and the reduced-order model. Test problem.

Frequency number Error (%)

1 1.3�10� 3

2 1.1�10� 2

3 3.4�10� 2

4 8.8�10� 2

Fig. 4. Iso-probability curves associated with the failure events of the first, fifth,
and eighth floor (unreduced model).

Fig. 5. Iso-probability curves associated with the failure events of the first, fifth,
and eighth floor (reduced-order model).
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It is important to note that the selection of the number of fixed-
interface modes per substructure, necessary to achieve a prescribed
accuracy, can be done off-line, before the design procedure takes
place. This calibration analysis can be carried out not only for the
reference model but for other configurations as well. Validation
calculations have shown that the reduced-order model is adequate
for the entire design space defined in (29). In summary, it is
observed that even for this simple model an important reduction in
the number of generalized coordinates is obtained with respect to
the number of the degrees of freedom of the original unreduced
finite element model. In fact, an almost 75% reduction is obtained in
this test problem. It is expected that a more significant reduction
will be obtained for more involved finite element models (see next
example problem).
7.1.4. Results
The effectiveness of the model reduction technique in the

context of the design problem is investigated in this section.
Figs. 4 and 5 show some iso-probability curves in the design space
constructed by using the original unreduced model and the
reduced-order model, respectively. For clarity, the design space is
given directly in terms of the actual dimension of the column
elements square cross section. The iso-probability curves corre-
spond to the three failure events defined in Section 7.1.2. These
curves are constructed by using a set of failure probability esti-
mates distributed over the design space. Each of the estimate is
obtained by subset simulation as indicated before. The resulting
curves, which are somewhat rugged because of the variability of
the probability estimates, have been smoothed for presentation
purposes. It is observed that the iso-probability curves obtained by
the full and reduced-order model are almost identical. There is
only small differences for some iso-probability curves corre-
sponding to low probability events (r10�5), but they follow the
same trend. The small differences at low probability levels are due
to the simulation scheme used to estimate such probabilities
(subset simulation in this case), but they are not due to the per-
formance of the reduced model which is very accurate. The pre-
vious result implies that the final design can be obtained with
sufficient accuracy by using the reduced-order model instead of
the full model.
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From the design point of view it is seen that the iso-probability
curves associated with the relative displacement of the first floor
(PF1 ) show a weak interaction between the dimension of the col-
umn elements square cross section of the lower and upper floors
specially for flexible lower floors columns (i.e. a1r0:4 m). Under
this condition, the iso-probability curves are controlled by the
dimension of the column elements square cross section of the
lower floors, as expected. For more rigid lower floors columns the
interaction between the design variables is somewhat more pro-
nounced. On the other hand, the iso-probability curves related to
the relative displacement of the fifth floor (PF2 ) show a clear
interaction between the dimension of the column elements square
cross section of the lower and upper floors. Finally, the iso-
probability curves associated with the roof displacement (eighth
floor) (PF3 ) show a strong non-linear interaction between the
dimension of the column elements square cross section of all
floors, as anticipated. These results give a valuable insight into the
interaction and effect of the design variables on the reliability of
the structural model.

Fig. 6 shows the feasible domain, some normalized objective
contours and some iso-probability curves as well as the final
design. It is observed that the geometric and side constraints are
inactive at the final design. The reliability constraints related to the
relative displacement of the first and eighth floor with respect to
the ground are active at the final design. Starting from the initial
feasible design θ1 ¼ 2:0 (a1 ¼ 0:8 m) and θ2 ¼ 1:625 (a2 ¼ 0:65 m),
the final design is obtained in about ten iterations by using the
interior point algorithm described in [33,35] (see Section 4.2). In
terms of the computational cost, the number of finite element runs
involved during the design process depends on the number of
Fig. 6. Feasible domain and optimum design.

Fig. 7. Finite element mod
iterations and the number of simulations necessary to estimate the
failure probability and its sensitivity for the different designs
required by the optimizer. Thus, the computational effort for
assembling the finite element model and obtaining its dynamic
response for a given design is the key factor for comparison pur-
poses. The results indicate that the speedup achieved by the pro-
posed formulation is about 4, where the speedup is defined as the
ratio of the execution time of the design process by using the
unreduced original model and the execution time of the design
process by using the reduced-order model. As previously pointed
out, it is expected that even a more significant reduction in com-
putational cost will be achieved for the cases of more involved
models (see next example problem). Finally, it is important to note
that this reduction in computational effort is achieved without
compromising the accuracy of the final design. In other words, the
final design obtained from the reduced-order model is analogous
to the one obtained from the unreduced model.

7.2. Example 2: Application problem

7.2.1. Structural system
The bridge structural model shown in Fig. 7, which has been

borrowed from [18], is used in this section as an application pro-
blem. The bridge is curved in plan and has a total length of 119 m.
It has 5 spans of lengths equal to 24.0 m, 20.0 m, 23.0 m, 25.0 m,
and 27.0 m, respectively, and four piers of 8 m height that support
the girder monolithically. Each pier is founded on an array of four
piles of 35 m height. The piers and piles are modeled as column
elements of circular cross-section with 1.6 m and 0.6 m diameter,
respectively. The deck cross section is a box girder which is
modeled by beam and shell elements. It rests on each abutment
through two rubber bearings that consist of layers of rubber and
steel plates, with the rubber being vulcanized to the steel plates. A
schematic representation of a rubber bearing is also shown in the
figure, where Dr represents the external diameter, Di¼0.1 m is the
internal diameter, and Hr ¼ nrtr is the total height of rubber in the
bearing, where tr is the layer thickness and nr is the number of
rubber bearings. The force-displacement characteristics of the
rubber bearings are modeled by a biaxial hysteretic behavior. An
analytical model based on a series of experimental tests conducted
for real-sized rubber bearings is used in the present application.
For a detailed description of the analytical model that describe the
nonlinear behavior of the bearings the reader is referred to [41].
The interaction between the piles and the soil is modeled by a
series of translational springs along the height of the piles with
stiffnesses varying from 11,200 T/m at the base to 0.0 T/m at the
surface.
el of bridge structure.



Table 2
Nominal values of structural parameters.

Structural parameter Nominal value (m)

Dpi ; i¼ 1;2;3;4 1.6

DLr 0.8

HLr 0.17

DRr 0.8

HRr 0.17

Fig. 8. Substructures of the finite element model used for design purposes.
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The net effect of these elements is to increase the translational
stiffness in the x and y direction of the column elements that
model the piles. The following values of the material properties of
the concrete structure are considered. The Young's modulus is
taken to be E¼ 2:0� 1010 N=m2, the Poisson ratio ν¼ 0:2, and
mass density ρ¼2500 kg/m3. Finally, a 3% of critical damping is
added to the model. The selected finite element model for the
bridge structure has 10,068 degrees of freedom. In what follows, it
is assumed that the previous model is representative of the actual
behavior of the bridge structure and it is referred to as the nominal
model. In this context, it is assumed that the structural compo-
nents such as the piers, piles and the deck girder remain linear
during the analysis while the nonlinearities are localized in the
rubber bearings response. In addition, the axial deformation of the
piers is neglected with respect to their bending deformation. The
bridge structure is subjected to a ground acceleration in a direc-
tion defined at 25° with respect to the x-axis as shown in Fig. 7.
Such ground acceleration is modeled as in the previous example,
that is, by a stochastic point-source model. The duration of the
excitation is equal to T¼20 s with a sampling interval equal to
ΔT ¼ 0:01 s. In this case, the generation of the stochastic ground
motions comprise more than 2000 random variables and therefore
the vector of uncertain parameters z involved in the problem has
more than 2000 components.

7.2.2. Reliability-based design formulation
The reliability-based design problem is defined in terms of the

following constrained non-linear optimization problem

Minθ CðθÞ
PFi ðθÞrPn

Fi ; i¼ 1;2

θAΘ ð30Þ
where θ;θi; i¼ 1;…;8 is the vector of design variables, CðθÞ is the
objective function, PFi ðθÞ; i¼ 1;2 are the failure probability func-
tions, and Pn

Fi
; i¼ 1;2 are the corresponding target failure prob-

abilities which are taken equal to Pn

Fi
¼ 10�4; i¼ 1;2. The design

variables include the diameter of the piers circular cross section,
and the external diameter and total height of rubber in the bear-
ings. Design variables θ1;θ2;θ3 and θ4 are related to the diameter
of the circular cross section of the four piers, while design vari-
ables θ5;θ6;θ7 and θ8 are associated with the external diameter
and the total height of rubber of the bearings located at the
abutments. The relationship between the design variables and the
actual structural parameters is given by Dpi ¼ θiDpi; i¼ 1;2;3;4,
DLr ¼ θ5DLr , HLr ¼ θ6HLr , DRr ¼ θ7DRr , and HRr ¼ θ8HRr , where Dpi;

i¼ 1;2;3;4 are the diameters of the circular cross section of the
piers, DLr and DRr are the external diameters of the bearings
located at the left and right abutments, respectively, HLr and HRr

are the total heights of rubber of the bearings located at the left
and right abutments, respectively, and Dpi, DLr , HLr , DRr , HRr are the
corresponding nominal values of the parameters which are given
in Table 2.

The side constraints for the design variables are given by:
0:75rθir1:25; i¼ 1;2;3;4; 0:75rθir1:25; i¼ 5;7, and
0:88rθir1:47; i¼ 6;8. The objective function CðθÞ represents a
cost function which is assumed to be proportional to the total
volume of rubber in the bearings and to the total volume of the
piers. Failure, that is unacceptable performance, is defined in
terms of the relative displacement of piers and the relative dis-
placement of the rubber bearings. Thus, the corresponding failure
probability functions are given by

PF1 ðθÞ ¼ P max
tA ½0;T �

∣ubmaxðt;θ; zÞ∣
0:10 m

41
� �

;

PF2 ðθÞ ¼ P max
tA ½0;T �

∣δmaxðt;θ; zÞ∣
0:07 m

41
� �

ð31Þ

where ubmaxðt;θ; zÞ represents the maximum relative displacement
between the deck girder and the base of the rubber bearings at
each abutment (in the x or y direction), and δmaxðt;θ; zÞ denotes
the maximum relative displacement between the top of the piers
and their connection with the piles foundations (in the x or y
direction). Note that the estimation of the failure probability
functions for a given design θ represents a high-dimensional
reliability problem as in the test problem.

7.2.3. Substructures characterization
Considering the previous design formulation the bridge struc-

ture is divided into a number of substructures. The division is
guided by a parametrization scheme so that the substructure
matrices for each one of the introduced substructures depend on
only one of the design variables. In particular, the structural model
is subdivided into six linear substructures and two nonlinear
substructure as shown in Fig. 8. Substructure S1 is composed by
the pile elements, substructures S2, S3, S4 and S5 include the dif-
ferent pier elements, and substructure S6 corresponds to the deck
girder. Finally, substructures S7 and S8 are the nonlinear sub-
structures composed by the rubber bearings located at the left and
right abutment, respectively. With this subdivision substructures
S1 and S6 do not depend on the design variables, while sub-
structures S2, S3, S4 and S5 depend on the design variables θ1, θ2,
θ3, and θ4, respectively, and design variables θ5, θ6, θ7, and θ8 are
associated with the nonlinear substructures S7 and S8. The non-
linear functions of the design variables θj; j¼ 1;2;3;4 corre-
sponding to the linear substructures are given by hjðθjÞ ¼ θ4

j , and

gjðθjÞ ¼ θ2
j , respectively.

Based on an analysis similar to the one performed in the pre-
vious example problem it is concluded that retaining ten general-
ized coordinates for substructure S1, two for each one of sub-
structures S2, S3, S4 and S5, and ten for substructure S6 is adequate in
the context of this application. The error (in percentage) between
the modal frequencies using the full nominal reference finite ele-
ment model and the modal frequencies computed using the
reduced-order model is shown in Table 3. The modal frequencies for
both models are computed by considering only the linear compo-
nents of the structural system. It is seen that with this number of
generalized coordinates the error fall bellow 0.5% for the lowest



Fig. 10. Design space in terms of the design variables associated with the rubber
bearings ðDr ;HrÞ. PF1 : iso-probability curves of failure event F1. PF2 : iso-probability
curves of failure event F2. C: normalized objective function contours.

Table 3
Modal frequency error between the modal frequencies of the full model and the
reduced-order model.

Frequency number Unreduced model Reduced-order model Error

ω (rad/s) ω (rad/s) (%)

1 4.214 4.216 0.05
2 4.282 4.284 0.06
3 4.569 4.572 0.06
4 12.197 12.249 0.43
5 15.424 15.462 0.25
6 23.419 23.421 0.01

Fig. 9. MAC-values between the mode shapes computed from the unreduced finite
element model and from the reduced-order model.
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6 modes. The corresponding matrix of MAC-values (modal assur-
ance criterion) between the first six modal vectors computed from
the unreduced finite element model and from the reduced-order
model is shown in terms of a 3-D representation in Fig. 9. It is
observed that the values at the diagonal terms are close to one and
almost zero at the off-diagonal terms. Thus, the modal vectors of
both models are consistent. The comparison with the lowest
6 modes is based on the fact that the contribution of the higher
order modes (higher than the 6th mode) in the dynamic response
of the model is negligible. In summary, a total of 28 generalized
coordinates, corresponding to the fixed interface normal modes of
the linear substructures, out of 10,008 internal DOF of the original
model, are retained for the six linear substructures. On the other
hand, the number of interface degrees of freedom is equal to 60 in
this case. With this reduction, the total number of generalized
coordinates of the reduced-order model represents a 99% reduction
with respect to the unreduced model. Thus, a drastic reduction in
the number of generalized coordinates is obtained with respect to
the number of the degrees of freedom of the original unreduced
finite element model. Based on the previous analysis, it is concluded
that the reduced-order model and the full unreduced model are
equivalent in the context of this application problem. Therefore, the
design process of the bridge structural model is carried out by using
the reduced-order model. As previously pointed out the calibration
of the reduced-order model can be done off-line, before the design
procedure takes place.

7.2.4. Design results
Taking advantage of the reduced-order model a couple of

design scenarios are investigated in detail in order to get insight
into the reliability and general performance of the bridge structure
under consideration. First, the design of the rubber bearings
(isolators) located at the abutments is considered. In particular, the
effect of the external diameter and the total height of rubber in the
bearings on the design of such elements is studied. To this end, the
design variables θ1, θ2, θ3, and θ4, which control the diameters of
the circular cross sections of the piers, are kept constant and equal
to their upper bound values θi ¼ 1:25; i¼ 1;2;3;4 (Dpi ¼ 2:0 m).
This is done in order to isolate the effect of the design variables
associated with the rubber bearings. Moreover, these variables are
linked into two design variables, one related to the external dia-
meter (θDr ¼ θ5 ¼ θ7) and the other related to the total height of
rubber (θHr ¼ θ6 ¼ θ8). In other words all rubber bearings are
assumed to have the same geometrical properties. With the pre-
vious setting Fig. 10 shows some iso-probability curves and
objective function contours as well as the final design.

The design space is shown in terms of the actual values of the
external diameter (Dr ¼ θDrDr) and the total height of rubber
(Hr ¼ θHrHr). The objective contours are normalized by a cost
factor and the iso-probability curves are constructed by using a set
of failure estimates distributed over the design space. As in the
previous example these curves have been smoothed for pre-
sentation purposes. It is important to note that these curves were
constructed by the reduced-order model in a reasonable compu-
tational time. The construction of these curves from the full finite
element model is not practical due to the excessive computational
time required to estimate the failure probabilities over the design
space. From the figure it is seen that the probability of the failure
event F1 decreases as the external diameter of the isolators
increases. This is reasonable since the isolation system becomes
stiffer with rubber bearings having larger external diameters and
thus the relative displacements between the deck girder and the
base of the rubber bearings at each abutment, which control the
failure event F1, are expected to decrease. On the contrary, the
failure probability increases as the height of rubber increases. In
this case the isolation system becomes more flexible and therefore
the relative displacements between the deck girder and the base
of the rubber bearings increase. A similar effect is observed with
respect to the failure event related to the relative displacement
between the top of the piers and their connection with the piles
foundations (F2). That is, an increase of the external diameter of
the isolators decreases the probability of failure event F2 since the
overall system becomes stiffer. On the other hand, an increase of
the total height of rubber in the isolators increases the probability
of failure event F2 since in this case the structural system becomes
more flexible. The corresponding final design is given by
Dr¼0.75 m and Hr¼0.15 m. The side constraint associated with
the height of rubber and the reliability constraint related to the



Fig. 11. Design space in terms of the diameter of the circular cross sections of the
piers (Dp) and the external diameter of the rubber bearings (Dr). PF1 : iso-probability
curves of failure event F1. PF2 : iso-probability curves of failure event F2. C: nor-
malized objective function contours.

Table 4
On-line computational cost of different tasks for a given design.

Task Full finite element
model

Reduced-order
model

Time (s) Time (s) Speedup

Finite element
generation

52.9 0.013 4069

Modal analysis 0.74 0.052 14
Dynamic response 1.7 0.51 3

Sum of different tasks 55.34 0.58 95
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maximum relative displacement between the deck girder and the
base of the rubber bearings at each abutment are active at the final
design. Contrarily, the reliability constraint associated with the
maximum relative displacement between the top of the piers and
their connection with the piles foundations is inactive.

Next, the interaction between bridge structural components
and rubber bearing parameters is considered. Specifically, the
design space in terms of the diameter of the circular cross sections
of the piers and the external diameter of the rubber bearings is
constructed. For this purpose the design variables associated with
the diameters of the circular cross sections of the piers are linked
to one design variable θDpier , i.e. θDpier ¼ θ1 ¼ θ2 ¼ θ3 ¼ θ4, while the
design variables θ5 and θ7 associated with the external diameters
of the rubber bearings are linked to one design variable θDr , i.e,
(θDr ¼ θ5 ¼ θ7). Design variables related to the total heights of
rubber in the bearings are kept constants and equal to their lower
bound values, i.e, θ6 ¼ θ8 ¼ 0:88 (Hr¼0.15 m). Fig. 11 shows some
objective contours and iso-probability curves as well as the final
design. As in the previous figure, the design space is shown in
terms of the actual values of the diameter of the circular cross
sections of the piers (Dp ¼ θDpier

Dp) and the external diameter of
the rubber bearings (Dr ¼ θDrDr). From the figure it is observed
that the probability of failure event F2 decreases as the diameter of
the circular cross sections of the piers increase. In this case the
piers become stiffer and therefore the relative displacements
between the top of the piers and their connection with the piles
foundations decrease. It is also seen that the failure event F2 is
controlled by the diameter of the circular cross sections of the
piers for values of this quantity close to its lower bound, i.e.
Dpr1:45 m. In this range of values the iso-probability curves are
almost perpendicular. So, the effect of the external diameter of the
isolator is negligible. In other words, the flexibility of the pier
elements controls the relative displacements between the top of
the piers and their connection with the piles foundations, as
expected. Contrarily, for values of this quantity close to its upper
bound, i.e. DpZ1:70 m a strong interaction between the diameter
of the circular cross sections of the piers and the external diameter
of the rubber bearings is observed. Thus, for rigid pier elements
the relative displacements between the top of the piers and their
connection with the piles foundations is controlled by both design
variables, that is, Dp and Dr. In fact, the iso-probability curves
indicate that for example an increase in the diameter of the cir-
cular cross sections of the piers is compensated by a decrease in
the external diameter of the bearings. In other words, for such
combination of the design variables Dp and Dr the probability of
failure remains invariant. On the other hand it seen that the failure
event F1 is mainly controlled by the external diameter of the
rubber bearings. Actually, the iso-probability curves associated
with failure event F1 show a relatively weak interaction between
the diameter of the circular cross sections of the piers and the
external diameter of the rubber bearings. The probability of failure
of this event decreases as the external diameter of the isolators
increases, which is the same behavior observed in Fig. 10. The final
design for this scenario is given by Dp¼1.64 m and Dr¼0.67 m
(point B in the figure) where both reliability constraints are active.

The results shown in Fig. 11 can also be used to demonstrate
the benefits of designing the isolators and the bridge structure
simultaneously. For example, if the design process involves only
the isolators and the diameter of the circular cross sections of the
piers are kept constant at their upper bound values (Dp¼2.0 m),
the optimal design is given by Dr¼0.75 m (point A in the figure)
with a corresponding normalized cost equal to C¼1.4. On the
other hand, if the diameter of the circular cross sections of the
piers is also considered as design variable the final design moves
from point A to point B, with a decrease of the normalized cost in
about 30%. Thus, taking into account the interaction between the
design variables associated with the bridge structure and the
isolators during the design process is quite beneficial in terms of
the cost of the final design. It is interesting to note that the final
design previously obtained can be improved just marginally if the
eight design variables are considered as independent during the
design process. It can be shown that in this case the nominal cost
is decreased in about 5% with respect the final design shown in
Fig. 11. The corresponding design process converges in less than
fifteen iterations starting from the initial feasible design given by
Dpi ¼ 2:0 m; i¼ 1;2;3;4, DLr ¼DRr ¼ 1:0 m and HLr ¼HRr ¼ 0:25 m.

Finally, it is noted that the above observations and remarks give
a valuable insight into the complex interaction of the design
variables on the performance and reliability of the bridge struc-
tural system.

7.2.5. Computational cost
Table 4 shows the on-line computational costs involved in the

assemblage of the finite element model and the computation of the
dynamic response for a given design considering the full finite ele-
ment model and the reduced-order model. These operations and
procedures are performed at each iteration of the design process. The
last column of the table indicates the speedup (round to the nearest
integer) achieved by the reduced-order model for the different tasks.
As previously pointed out, the speedup is the ratio of the execution
time by using the unreduced model and the execution time by using
the reduced-order model. It is seen that the difference is quite sig-
nificant. In fact, the overall speedup for the online calculations is
more than 90 in this case (last row of the table).

The off-line computational cost, that is the cost of calculations
related to the definition of the reduced-order model and the
characterization of the transformation matrix that maps the gen-
eralized coordinates to the physical coordinates of the unreduced
model, which are preformed once during the design process,
corresponds to approximately two full analyses (finite element
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model generation and dynamic response) of the unreduced model
in this case. Considering this cost an overall speedup value of
about 10 is obtained by the proposed methodology in solving this
particular design problem. However, once the reduced-order
model has been defined several design scenarios, i.e. in terms of
different objective functions and reliability constraints, can be
explored and solved efficiently. So, high speedup values (20, 40 or
even more) can be obtained for the design process as a whole. As
previously pointed out this reduction in computational effort is
achieved without compromising the accuracy of the final design.
8. Conclusions

A general strategy for dealing with a class of reliability-based
design problems of stochastic finite elements has been presented.
It consists in the integration of a model reduction technique with
an appropriate optimization scheme. The design process is carried
out in a reduced space of generalized coordinates. In particular, a
model reduction technique based on fixed interface normal modes
and interface constraint modes is considered in the present
implementation. The reduction technique, which is applied to the
linear components of the structural systems, produces highly
accurate models with relatively few substructure modes. Numer-
ical examples indicate that the integration of the proposed model
reduction technique in the framework of reliability-based opti-
mization is applicable for a class of linear and nonlinear finite
element models under stochastic excitation. The results also
demonstrate that the computational effort involved during the
design process is reduced significantly with respect to the process
considering the unreduced finite element model. In fact, good
speedup values were obtained. On the other hand, the reduction in
computational effort is achieved without compromising the
accuracy of the design process. Based on the results of this study it
is concluded that the proposed approach is potentially an effective
tool for solving a class of reliability-based design problems invol-
ving complex structural systems under stochastic excitation.
Future research directions aim at considering more involved pro-
blems from the optimization point of view (formulations with
more design variables) as well as the implementation of design
process in a fully parallel environment. In addition, the imple-
mentation of interpolation schemes for approximating fixed-
interface normal modes and interface constraint modes for cases
in which the substructure matrices depend on more than one
design variable is another research effort. Work in these directions
are currently under consideration.
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Appendix A

The matrices K̂0, K̂ 1j and K̂ 2j; j¼ 1;…;nd are defined as

K̂0 ¼ TT
K̂

1
0δ10 0 0
0 ⋱ 0

0 0 K̂
Ns

0 δNs0

2
664

3
775T;
K̂ 1j ¼ TT

K̂
1
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K̂ 2j ¼ TT
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1

2δ1j 0 0
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0 0 K̂
Ns

2 δNsj

2
6664

3
7775T ð32Þ

where K̂
s
0 represents the stiffness matrix in generalized coordi-

nates vsðtÞ of a substructure that does not depend on the design
variables, i.e. δs0 ¼ 1 if sAS0, and δs0 ¼ 0 otherwise, and

K̂
s
1 ¼

Λs
kk 0s

kb

0s
bk 0s

bb

" #
; K̂

s
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0s
kk 0s

kb

0s
bk K
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bbþK

s
biΨ

s
ib

" #
ð33Þ

where δsj ¼ 1 if sASj and δsj ¼ 0 otherwise. On the other hand, the

matrices M̂0, M̂1j, M̂2j, and M̂3j, j¼ 1;…;nd are given by

M̂0 ¼ TT
M̂

1
0δ10 0 0
0 ⋱ 0

0 0 M̂
Ns

0 δNs0

2
664

3
775T;

M̂1j ¼ TT

M̂
1

1δ1j 0 0
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0 0 M̂
Ns

1 δNsj

2
6664

3
7775T

M̂2j ¼ TT

M̂
1

2δ1j 0 0
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0 0 M̂
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2 δNsj

2
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3
7775T;

M̂3j ¼ TT

M̂
1

3δ1j 0 0
0 ⋱ 0

0 0 M̂
Ns

3 δNsj

2
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3
7775T ð34Þ

where M̂
s
0 represent the mass matrix in generalized coordinates

vsðtÞ of a substructure that does not depend on the design vari-
ables, and
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;
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where all terms have been previously defined.
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